Big Data

Curso de Machine Learning supervisado con Scikit-learn

En este curso vamos a explorar la librería de scikit-learn para ejecutar todo el flujo del entrenamiento y optimización de modelos de machine learning para el aprendizaje supervisado.

Impartido por:

4.2 (24 valoraciones)
2 horas y 31 minutos · curso
ML supervisado con Scikit-learn

Lo que aprenderás en este curso:

  • Entrenar diferentes modelos de machine learning supervisado.
  • Utilizar “pipelines” para el procesamiento de datos.
  • Evaluación de los modelos entrenados.
  • Optimización de los modelos entrenados.
  • Consumir datos para el entrenamiento de modelos de machine learning.

Requisitos del curso

Es necesario tener conocimientos básicos de la teoría introductoria de machine learning y también saber manejar datos con Pandas.

Valoraciones de estudiantes:

  • 5
  • 4
  • 3
  • 2
  • 1
4.2
24 valoraciones

Contenido del curso:

    • 2 m
    • Introducción a Scikit-learn
      5 m
    • Sintaxis básica
      7 m
    • Requisitos mínimos
      8 m
    • Pasos previos a entrenar un modelo
      5 m
    • Dividir en Train y Test
      8 m
    • Pipeline
      5 m
    • Funciones especiales para preparar los datos
      11 m
    • Creando un pipeline
      7 m
    • 2 m
    • GLM
      8 m
    • Near neighbours
      5 m
    • SVM
      5 m
    • Modelos basados en árboles
      13 m
    • Redes neuronales
      9 m
    • Introducción a la evaluación de resultados
      4 m
    • Las diferentes métricas
      7 m
    • Métodos visuales para la evaluación
      6 m
    • Calibración de la probabilidad
      5 m
    • Optimización básica
      2 m
    • Eligiendo los mejores features
      5 m
    • Optimización estructurada
      6 m
    • Optimización de pipelines
      5 m
    • Resumen
      2 m
También te puede interesar

Te dejamos una selección de cursos, carreras y artículos

ML con clasificadores lineales en Python

Machine Learning con clasificadores lineales en Python

53 minutos y 19 segundos · taller

En este curso exploraremos la librería de scikit-learn para ejecutar todo el flujo del entrenamiento y optimización de modelos de machine learning para el aprendizaje …

  • Big Data
ML con modelos basados en árboles en Python

Machine Learning con modelos basados en árboles en Python

51 minutos y 4 segundos · taller

En este curso exploraremos la librería de scikit-learn para ejecutar todo el flujo del entrenamiento y optimización de modelos de machine learning para el aprendizaje …

  • Big Data

Dudas frecuentes

1

¿Cuál es el precio?

En OpenWebinars no vendemos cursos, talleres o laboratorios unitarios.

Tenemos diferentes tipos de suscripciones, que te dará acceso completo a todos los cursos de la plataforma y a los nuevos que vamos lanzando, siempre y cuando tu suscripción esté activa (como Spotify con la música o Netflix con las películas y series).

¿Eres una empresa? Tenemos planes especiales para ti. Consúltanos aquí.

2

¿Cuándo comienza el curso?

En OpenWebinars los cursos no tienen fecha de inicio y de final.

Cada curso tiene una fecha de publicación y desde ese día estarán 100% disponible todos los contenidos del curso para los usuarios suscritos a alguno de nuestros planes.

3

¿Puedo obtener un diploma que acredite mis conocimientos?

Efectivamente, una vez superada cada formación, podrás descargarte el diploma acreditativo de cada una de ellas. Añádelas a tu CV y mejora tu perfil para las empresas.

También podrás obtener un diploma de nivel superior al superar todas las formaciones de la carrera.

Este curso online está pensado para cualquier alumno que esté comenzando su formación en el mundillo de machine learning, que ya conozcan los conceptos teóricos fundamentales y quieran aprender a aplicar sus conocimientos en el campo del aprendizaje supervisado utilizando el lenguaje de programación Python.

Se requieren conocimientos básicos de la teoría de machine learning y saber manejar datos con la librería Pandas. Si necesitas aprender estos conceptos o refrescarlos, puedes realizar los cursos que encontrarás en nuestra plataforma, como son Curso de introducción a Machine Learning, Curso de tratamiento de datos con Pandas en Python y/o Curso de tratamiento de datos con Pandas y NumPy.

La primera parte de este curso de machine learning supervisado la dedica el profesor en acercar como toma de contacto a scikit-learn y su uso para entrenar modelos. Explicará qué es, los motivos por los que se utiliza, qué otras tecnologías conforman su ecosistema, cómo realizar su instalación y un primer vistazo a la sintaxis básica de esta librería.

A continuación, en el siguiente segmento formativo, nos enfocamos en los pasos previos al entrenamiento de un modelo, en el que aprenderás cuáles son y cómo realizar estos procesos previos de una forma teórica y también práctica.

Avanzamos hasta el bloque en el que veremos los modelos de scikit-learn que podemos entrenar, cuáles tenemos disponibles y las diferencias entre ellos, profundizando en los modelos GLM, Near neighbours, SVM, los modelos basados en árboles y las redes neuronales.

Seguidamente vamos a ver cómo realizar la evaluación de los resultados obtenidos tras entrenar nuestros modelos. Tras una introducción a estos procesos, veremos las diferentes métricas que podemos elegir y cómo elegir la más acertada en cada caso, los diferentes métodos visuales para la evaluación y la calibración de la probabilidad.

Para concluir este curso, aprenderás a optimizar los modelos, un paso de gran importancia dentro del entrenamiento de modelos. En las lecciones que conforman este apartado se explicará lo referente a la optimización básica para comenzar, y profundizando después en la elección de los mejores features, cómo realizar una optimización estructurada y una optimización de pipelines.

Las cookies nos permiten ofrecer nuestros servicios. Al utilizar nuestros servicios, aceptas el uso que hacemos de las cookies. Más Información.