Esta formación está indicada para todos los que están comenzando a introducirse en el mundo de machine learning y ya entienden los conceptos teóricos más básicos, pero quieren aprender a poner este conocimiento de aprendizaje supervisado en práctica con el lenguaje Python.
Para seguir el curso de forma correcta, es necesario tener conocimientos básicos de la teoría introductoria de machine learning y también saber manejar datos con la librería Pandas. Si lo necesitas, te recomendamos realizar algunos de nuestros cursos relacionados: Curso de introducción a Machine Learning, Curso de tratamiento de datos con Pandas en Python y/o Curso de tratamiento de datos con Pandas y NumPy.
Este curso online comienza con el apartado centrado en el entrenamiento de un modelo, en el que realizaremos una primera toma de contacto con scikit-learn, explicando qué es, por qué se utiliza, qué otras tecnologías conforman su ecosistema, cómo realizar su instalación y la sintaxis básica de esta librería.
Después entramos en las diferentes secciones dedicadas a la clusterización de datos, en las cuales se desarrollarán aspectos como el uso de Kmeans para visualizar resultados y evaluarlos, la posterior preparación de esos datos, la elección y normalización de variables, además de otros algoritmos diferentes a Kmeans para la clusterización (DBSCAN y clusterización jerárquica), y, para finalizar veremos unos casos de uso de la clusterización.
Seguidamente continuamos con los bloques formativos dedicados a la reducción de dimensionalidad, en los cuales se introducirán los algoritmos que se utilizarán en este proceso (PCA y t-SNE), además de ver unos casos de uso de la reducción de dimensiones.